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Abstract—In this paper, we present new models and algorithms for control and optimization of a class of next generation
communication networks: Hierarchical Heterogeneous Wireless Networks (HHWNs), under real-world physical constraints. Two
biology-inspired techniques, a Flocking Algorithm (FA) and a Particle Swarm Optimizer (PSO), are investigated in this context. Our
model is based on the control framework at the physical layer presented previously by the authors. We first develop a nonconvex
mathematical model for HHWNs. Second, we propose a new FA for self-organization and control of the backbone nodes in an HHWN
by collecting local information from end users. Third, we employ PSO, a widely used artificial intelligence algorithm, to directly optimize
the HHWN by collecting global information from the entire system. A comprehensive evaluation measurement during the optimization
process is developed. In addition, the relationship between HHWN and FA and the comparison of FA and PSO are discussed,
respectively. Our novel framework is examined in various dynamic scenarios. Experimental results demonstrate that FA and PSO both
outperform current algorithms for the self-organization and optimization of HHWNs while showing different characteristics with respect

to convergence speed and quality of solutions.

Index Terms—Heterogeneous wireless networks, mobile ad hoc networks, directional wireless communication, flocking algorithm,

particle swarm.

1 INTRODUCTION

ECENT advances in directional wireless communications

for providing mobile, broadband wireless connectivity
are making next generation communication networks
increasingly complex. These networks are characterized
by hierarchical architectures, with heterogeneous properties
and dynamic behavior. The need for ubiquitous broadband
connectivity and the capacity limitation of homogeneous
wireless networks [1] is driving communication networks to
adopt hierarchical architectures with diverse communica-
tion technologies and node capabilities at different layers
that provide assured end-to-end broadband connectivity in
a wide range of scenarios [2], [3], [4], [5], [6], [7]. In
particular, Hierarchical Heterogeneous Wireless Networks
(HHWNSs) use a wireless backbone network consisting of a
set of base stations or backbone nodes that use directional
wireless communications to provide end-to-end broadband
connectivity to capacity-limited ad hoc networks and/or
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end hosts. As an example illustrated in Fig. 1, backbone-
based wireless networks use a two-tiered network archi-
tecture, which consists of a set of flat ad hoc wireless
networks and/or hosts as well as a broadband wireless
mesh backbone network of higher capability nodes. In this
architecture, backbone nodes use directional wireless
communications (higher tier), either Free Space Optical
(FSO) or directional Radio Frequency (RF), to aggregate and
transport traffic from hosts at lower layers (lower tier). The
advantages of directional wireless communications can be
well exploited at the upper layer, where line of sight
constraints are less restrictive and interference-free, and
point-to-point communication links can provide extremely
high data rates (up to and beyond Gb/s).

The most important concern in HHWNSs is to assure
network coverage and backbone connectivity in dynamic
wireless environments. Llorca et al. presented a convex
energy minimization model for the joint coverage-connec-
tivity optimization problem in HHWNs that dynamically
adjusts the location of mobile backbone nodes in order to
minimize the potential energy of the network system. The
potential energy function for HHWNSs is defined as the total
communications energy stored in the wireless links forming
the network [11], [12]. A completely distributed, gradient-
based Force algorithm was presented that drives the
network topology to optimal configurations based on local
“forces” exerted on network nodes [11], [12].

In this paper, we show that when adding real-world
constraints, such as power limitations, the capacity of the
base stations and link blockage by terrain, the problem
should no longer be formulated as a strictly convex
optimization problem. Thus, this research focuses on the
modeling of HHWNs under real-world physical constraints,
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Fig. 1. Two-tiered architecture.

and the development of effective biology-inspired algo-
rithms for topology and mobility control in dynamic
scenarios. We compare their performance with the optimal
configuration of backbone nodes for the energy minimiza-
tion problem in an HHWN. The proposed approach
delivers a number of desirable features that include
generality, robustness, and efficiency. Specifically, these
features can be described as follows:

e The model’s generality encompasses the hierarchical
architecture of wireless communication networks
and its modeling methodology under real-world
physical constraints. We use a two-tiered backbone-
based network architecture (Fig. 1), where a set of
flat ad hoc wireless networks with limited capabil-
ities are interconnected through a broadband wire-
less mesh backbone network of higher capability
nodes. This two-tiered architecture can be extended
n-fold: the bottom layer can be extended by a
heterogeneous set of end users with different
communication capabilities, which could be fixed,
mobile, or organized in cluster-forming ad hoc
networks; and the upper layer can be constructed
through multiple hierarchical layers of high cap-
ability backbone nodes.

e The proposed approach is robust because of its
adaptation to a changing environment and its robust-
ness to real-world physical constraints, which include
power limitations, communication capacity, channel
limitations such as obscuration and/or atmospheric
turbulence, taboo areas (geographic environment,
undesirable weather events, security blockages, etc.).
The main challenge in the design of Directional
Wireless Backbone (DWB) networks is to assure
robust network performance in a highly dynamic
environment that is characterized by dynamics of end
users or nodes (node mobility, node addition, and
deletion) and link state (connection path loss, atmo-
spheric attenuation, and turbulence). Our topology
control strategies enable us to provide a self-organiz-
ing capability to dynamically maintain network
performance. By incorporating real-world physical
constraints into the network control model, the
system energy can be minimized in conjunction with
guarantees of maximum end-to-end communication.
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e Optimality and speed are two key measures of
effective self-organization and optimization algo-
rithms for HHWNs. We are inspired by dynamic
models in nature (e.g., flocking and swarming) as
they can be applied to the control and self-organiza-
tion of HHWNSs. Our proposed approaches use a
Flocking Algorithm (FA) and a Particle Swarm
Optimizer (PSO) to deliver optimized dynamic
network behavior. The FA-based approach produces
optimal solutions from local interactions, is comple-
tely distributed and shows constant time complexity,
which is especially useful for large-scale HHWNs
and real-time applications. The PSO-based approach
produces optimal solutions in a stochastic manner,
using global network information, which reduces
the risk of trapping in local minima while delivering
satisfactory computational efficiency.

The new main contributions of this paper are threefold.
First, we present a nonconvex model for topology control in
HHWNSs where the minimization of the potential energy
function is subject to real-world physical constraints.
Second, we propose a new FA to self-organize the backbone
network at the upper layer in order to adapt to changing
environments and minimize the system’s energy. Third, we
employ a PSO algorithm to solve the global optimization
problem using a hybrid fitness function. A comparison
between FA and PSO in terms of network metrics is
discussed to provide insight for further work. This work
shows that both FA and PSO outperform our previous
force-driven algorithms [2], [12] for the optimization of
HHWNSs. PSO achieves superior performance in compar-
ison to FA but leads to a relatively slow convergence speed
and only favors the dynamics of backbone nodes in an x-y
plane. In contrast, FA is capable of delivering fast
convergence speed while producing satisfactory solutions
for an HHWN. Moreover, the repulsion model used in FA
allows backbone nodes to move flexibly in 3D space,
satisfying physical constraints (e.g., mountains).

The remaining sections of this paper are organized as
follows: a brief overview of heterogeneous wireless net-
works, flocking algorithms and Particle Swarm Optimiza-
tion techniques is presented in Section 2. Section 3 describes
the problem this research focuses on and the associated
mathematical models. In Section 4, we develop and
evaluate a new FA for the self-organization and optimiza-
tion of HHWNSs, and the corresponding algorithm is
implemented. In Section 5, PSO is employed to solve the
global optimization problem in HHWNs using a hybrid
objective, and the detailed implementation procedures of
the algorithm are described. We conduct extensive experi-
mental verifications in Section 6. A comparison between FA
and PSO is discussed in Section 7. Section 8 concludes the
paper with suggestions for future work.

2 RELATED WORK

2.1 Evolution of Wireless Networks

Wireless internet protocol-based networks have evolved
since the 1990s and can be described as involving three
architectures: 1) flat mobile ad hoc networks (e.g., [8]);
2) fixed, base station or infrastructure networks (e.g., [10]);
and 3) mobile, dynamic HHWN s (e.g., [2], [3], [4], [5], [6],
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[7]). A wireless mobile ad hoc network is a homogeneous,
decentralized wireless network consisting of multiple hosts
which also act as routers, that support multihop traffic
through dynamic wireless links [8]. Although minimal
configuration complexity and quick deployment make such
ad hoc networks suitable for sensor, surveillance and
emergency applications, the overall capacity of such net-
works is constrained by theoretical [1] and practical [9]
limitations. In order to overcome their capacity and
scalability limitations, cellular (single-hop) networks use
fixed base stations to more efficiently handle routing and
multicasting functions, and bandwidth limitations [10].
However, the fixed backbone infrastructure limits network
coverage as well as the ability to handle network dynamics
such as the mobility of the terminal nodes and the dynamics
of the wireless channel. In [2], [3], [4], [5], [6], and [7], an
HHWN architecture was introduced.

Llorca et al. [11] first proposed a quadratic optimization
method to jointly control network coverage and backbone
connectivity. They defined a quadratic energy function to
characterize the robustness of HHWNs and designed a
force-driven algorithm that dynamically drives the network
topology to minimum energy configurations based on local
forces exerted on network nodes. A quadratic model of the
energy function was then extended to an exponential model
that takes into account the effects of atmospheric attenua-
tion on the propagation of electromagnetic energy in
directional wireless links [12]. The convex energy model
was used by the authors to develop an Attraction Force
Driven (AFD) algorithm, where the net force used to
relocate the backbone nodes is computed as the negative
gradient of the energy function at the backbone nodes
locations. By considering practical power limitation con-
straints at the network nodes, recently Llorca et al. [2]
further extended the energy model using the Morse
potential [13], such that the convex energy function [12]
was transformed into a nonconvex function where commu-
nication energy saturates with distance emulating the
effects of link failure as a result of power limitation
constraints. Based on this nonconvex energy model, Llorca
et al. developed a hybrid control model where communica-
tion links are retained or released autonomously based on
their cost within the network architecture [2].

While these models take into account some constraints
on communication links such as transmitted power limita-
tions, a comprehensive model for topology control with
real-world physical constraints such as taboo areas needs to
be developed and validated. In addition, the modeling of
dynamics and heterogeneity needs investigation in a fully
mobile HHWN. Recently, Liu et al. [14] proposed a
topology control method for a multichannel multiradio
wireless network using directional antennas. However,
their method is based on the adjustment of antenna
orientations and channel assignment in static mesh router
configurations, while our topology control strategies con-
sider the dynamic movement of base station nodes at the
physical layer of an HHWN. The use of mobility to improve
network performance has been considered in the context of
ad hoc wireless networks. In [15], Grossglauser and Tse
exploit multiuser diversity by using mobile nodes as relays
in order to scale throughput while still restricting transmis-
sion to close neighborhoods. While an end user’s mobility
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cannot be controlled, a backbone or set of mobile base
stations at the higher tier can be. Accordingly, in our work,
mobility is controlled at the backbone layer to dynamically
optimize base station node movements in order to max-
imize coverage of end users, while maintaining backbone
connectivity.

2.2 Flocking Models of Dynamic Behavior in Nature

We are investigating how to apply flocking models, which
have been derived from observations in nature, such as the
dynamic movements of birds and other airborne animals,
to the self-organization and control of backbone nodes in
an HHWN.

Previous work on flocking is derived from the animation
of the birds’ flocking dynamics. Reynolds et al. [16], [17]
developed a basic flocking model using three simple
steering rules to control individual agents in the flock.
These steering rules [16], [17] include

e Alignment. Steering to move toward the average
heading of neighboring flock mates.
e Separation. Steering to avoid collision with other
local flock mates.
e Cohesion. Steering to move toward the average
position of neighboring flock mates.
The size of a neighborhood is determined by the sensor
range of a flocking agent. Since the movement of an agent is
only based on local information, the computational time
complexity is significantly reduced. These three rules in
Reynolds’s model [17] are sufficient to emulate the group
behavior in nature. This flocking model has been widely
applied in data visualization [18], [19] and clustering [20],
[21], [22]. Apart from Reynolds’s model and its applications,
the dynamics of biological systems have also drawn high
attention in other research fields such as physics, control
engineering, and biology. Vicsek et al. [23] first proposed a
phase transition model to investigate the emergence of self-
ordered motion in systems of particles with a biologically
inspired interaction. Jadbabaie et al. [24] and Moreau [25]
conducted a stability analysis with respect to Vicsek’s
model [23]. Gazi and Passino [26], [27] later proposed a
model using a continuous function to model the attraction
and repulsion between agents. Another model was also
introduced to analyze the information distribution in
animal groups [28]. Many flocking control algorithms such
as predictive control [29] also have been investigated. One
advantage of these flocking models is the fact that they
work in a completely controlled way such that the system
complexity is reduced. In addition, the models do not need
any prior knowledge because the agents in the model are
force driven in a heuristic way. If the flocking space is
continuous and no physical constraints are imposed, the
coordination (convergence) of a group of agents can be
achieved [24], [25], [26], [27]. It is worth noting that most
studies of flocking in the control field only focus on the
topology of one leader and multiple followers and its
stability analysis. In real applications, however, many
practical constraints, e.g., undesired weather events, geo-
graphic conditions, and information capacity of each agent,
should be considered. We investigate more complex
systems consisting of multiple leaders (hosts) and multiple
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followers (backbone nodes). Thus, since the movement of
each agent is only based on local information, it is difficult
to reach the globally optimal state for the entire system.

2.3 Particle Swarm Optimization
We are also investigating how to apply what has been
learned about global, dynamic, and complex behavior in
animals in nature to the self-organization of HHWNSs.
PSO, as proposed by Kennedy and Eberhart [30], is
inspired by biological behaviors such as birds flocking and
fish schooling. In PSO, each individual, referred to as a
particle, is denoted as part of a solution to the optimization
problem and is assigned a randomized velocity. The particle
changes its position and velocity gradually by following its
own local optimum and the global optimum, in other words,
according to its own experience and the whole swarm
experience. Therefore, it is a stochastic global optimization
algorithm. Compared with other evolutionary algorithms,
PSO has some appealing features including easy implemen-
tation, few parameter tuning and a fast convergence rate. It
has been used in a wide variety of applications such as
neural network learning, pattern recognition, data mining,
controller design, and circuit optimization [31], [32], [33],
[34], [35]. A single-objective and unconstrained optimization
problem can be simply formulated as

Minf(X), (X € Q, X = (z1,22,...,%4)), (1)

where Q is denoted as the hyperspace and d is the
dimension of the optimization problem (in this paper, we
only discuss the minimization problem). A particle in the
search space is characterized by two parameters: position
and velocity. The position and the velocity of the ith particle
in the d-dimensional search space can be represented as
X[ = (xlyh X2y ,:L'g)d) and Vg = (Ul,17 U2y - - ,U[_’d), respec-
tively. The Ith particle has its own best position (local
optimum) P, = (pi1,p12,---,Pid) corresponding to the in-
dividual optimum obtained so far at time ¢. The global best
position is denoted by G = (g1, g, . . ., g4), which represents
the best position found so far at time ¢ for the whole swarm.
The new velocity of each particle is given by [30]

Vit + 1) = wVi(t) + i1 [P — Xi(1)] + cora[G — X3 (1)), (2)

where ¢; and ¢y are constants denoted as acceleration
coefficients (usually ¢; =cy =1.49), 1 and ry are two
independent random numbers uniformly distributed in
the range [0,1], w is the inertial weight. Empirical studies
[36] suggest that the convergence performance can be
greatly improved if w € [0.4,0.9] declines linearly as the
exploration proceeds. The updating scheme is given by

(wmax - wmin)
— 3)

w(t) = Wpax — t X ’

tmax
where wp. and wy, are the maximum and minimum
inertial weights, respectively, and ty.x is the maximum
number of iterations. The position of each particle is then
updated according to

Xit+1)=X(t) + Vi(t + 1). (4)

Usually the value of each component in V; is constrained to
the range [Umin,VUmax] In order to control the excessive
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roaming of particles outside the search space. Particles
move toward new positions according to (4). This process
repeats until either the maximum number of iterations is
reached or the stopping criterion is satisfied.

2.4 Flocking and Particle Swarm for Optimization
and Control in HHWNs
The objective with respect to the control of HHWNS is to
minimize the network energy by relocating the positions of
the backbone nodes and adapting to the network dynamics
under real-world physical constraints. Two algorithmic
methods—FA and PSO—are proposed to solve the energy
minimization problem such that the HHWN is autono-
mously self-organized and optimized. There is a strong
rationale behind using these two different approaches.
The relationship between HHWNs and flocking is
described by the following analogs:

e Entity. Terminal nodes (leaders) lead the backbone
nodes (followers) in HHWNSs; in FA, each agent or
assigned leader leads its neighboring agents.

e Control object. Backbone nodes are the control
objects in the HHWN, while each agent (except the
group leader) needs to be controlled in FA.

e Interaction. In an HHWN, each backbone node
interacts with its neighboring backbone nodes,
assigned terminal nodes, and physical constraints,
e.g., geographic constraints and undesired weather
conditions (we will specifically explain these con-
straints in the subsequent section); in FA, each agent
only interacts with its neighboring agents.

e Optimum. In an HHWN, the energy, which includes
the costs of connectivity (the links between backbone
nodes) and coverage (the links between backbone
nodes and terminal nodes), needs to be minimized
under physical constraints; each agent in FA interacts
with its neighboring agents in order to make the whole
flocking group reach an optimal state, where the
whole system is well self-organized and optimized.

On the other hand, PSO uses a stochastic global
optimization method, which can be directly used to
optimize the energy (connectivity and coverage) of
HHWNSs. Since the optimal solution with respect to
HHWN:Ss is the best location of each backbone node for
the current state of terminal nodes, it is straightforward to
encode each particle in PSO as the locations of all the
backbone nodes. Thus, according to (4) each particle moves
based on an evaluation function (e.g., the energy function)
to maintain the connectivity and coverage jointly, but it
needs to collect global information from all the backbones.

We will discuss the relationship between FA and PSO
together with a thorough comparison according to the
observations from experiments in Section 7.

3 NETWORK CoNTROL MODEL

In this section, we introduce a new HHWN control model,
which considers real-world physical constraints. We first
formulate a constrained optimization problem where the
objective is to minimize the network communications
energy (see Section 3.1). We then briefly describe a convex
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model, which does not consider real-world physical
constraints (see Section 3.2). Section 3.3 presents two
nonconvex models: 1) a Morse potential force driven model
involving power limitation constraints (maximum trans-
mitted power at the network nodes); and 2) a new hybrid
energy model that takes into account both power limitations
as well as distance threshold constraints. It is worth
pointing out that the convex model and the Morse potential
force driven model were introduced in [12] and [2],
respectively. The descriptions of these two models are
included in this work for the sake of completeness.

3.1 Problem Statement

In HHWNSs, a host s communicates with another host d by
transmitting its information to the closest backbone node;
then the traffic traverses the backbone network until it
reaches the backbone node that is closest to the destination;
and finally the backbone node that is closest to the
destination transports the traffic to the host d. This scheme
is based on two main properties: first, the end hosts need to
be well covered by the backbone nodes, and second, the
backbone nodes must have good connectivity among
themselves [11]. Thus, network performance in HHWNs
clearly depends on the joint optimization of network
coverage and backbone connectivity.

Llorca et al. defined a cost function that takes into
account the cost for network coverage and backbone
connectivity, as the total communications energy stored in
the wireless links forming the network, as follows [11], [12]:

N
N M

+ZZ wu(By, Ty),

=1 k=1

U(bij7hik,Bl7Bg7...7 = Q- bwu B“B)

M

()

where B; is the location of backbone node i, T, is the location
of terminal node k, N is the number of backbone nodes, M is
the number of terminal nodes, a (o > 0) is a weighting
parameter to balance the energy used for forming the mesh
backbone network and covering end hosts, b;; and h are the
binary variables, which are given by

1,
bij = {0,

where Ap refers to the backbone topology, and

iy = {é (™)

where Ar refers to the coverage topology, ie., hy =1
indicates that backbone node i covers terminal node %. The
measurement of communication cost u(B;, B;) is usually
associated with the euclidean distance between link ends
(4,7) and is precisely defined as the communications energy
per unit time required to send information from node i and
node j at the specified Bit Error Rate (BER) [3], [12]

if (i,7) € Ap is connected,
otherwise,

(6)

if (i,k) € Ay is connected,
otherwise,

j AT _ppe
Ppy " DA, ——— (exp(y[|1B; = B;i|)(II1Bi = BjlI"),  (8)

U5 =
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where Pz%o is the minimum received power, D/ is the
directivity of the transmitter antenna, A’ represents the
effective receiver area [37]. The scattering coefficient ~y
measures the attenuation electromagnetic radiation under-
goes as it travels through the atmosphere due to the
scattering effects caused by the presence of atmospheric
agents in the form of suspended water particles such as fog,
clouds, rain, or snow [2]. The calculation of u(B;, T}) is
similar to the calculation of u(B;, B;). The end users always
try to connect to the backbone node that is closest to them
while satisfying physical constraints.

Note that the first term in the cost function in (5),
denoted by Upp, represents the total energy stored in the
directional wireless links forming the mesh backbone
network, and the second term in (5), denoted by Upr,
represents the total energy stored in the wireless links
covering the end hosts. Thus, Upp measures the cost for the
backbone connectivity, i.e., a higher value of Upp indicates a
backbone topology that requires higher communications
energy in order to maintain the connectivity of backbone
nodes. On the other hand, a higher value of Upr indicates a
higher demand for communications energy in order to
retain end hosts covered at the specified BER [2].

The topology control problem in HHWNs is then
formulated as an energy minimization problem of the
following form:

min{U(bij, hir, B1, Ba, ..., By)Y(Bi= (2,4, 2!), B, € R®), (9)

which is subject to (6) and (7). Note that the optimization
problem formulated in (9) is performed over: b, the
assignment of directional wireless links between backbone
nodes; h;;, the assignment of wireless links between
backbone nodes and covered end users; (B, B, ..., Bx),
the location of the N backbone nodes. But the link
assignments b;; and h;;,, and the location of backbone nodes
(B1,Bs,...,By) must be subject to real-world physical
constraints, which include:

e Power limitation. “Power limitation” refers to the
maximum power at a transmitter. In practice, the
increase in transmitted power needed to maintain a
given link BER is limited by the maximum power at
the transmitter. Both backbone nodes and terminal
nodes have power limitations because either of them
might be a transmitter or a receiver.

o Traffic capacity. “Traffic capacity” refers to the
maximum traffic that a backbone node can receive
and transfer. In this paper, the capacity of a
backbone node is defined as the maximum number
of terminal nodes a base station can handle.

e Distance threshold. “Distance threshold” is defined
as the minimum distance for a backbone node to
avoid collisions with another backbone node or a
terminal node.

e Taboo areas. “Taboo areas” refers to constraints
imposed by the physical world such as geographic
obstacles (e.g., mountains and high-rise buildings),
undesired weather events (e.g., heavy clouds or
regions of precipitation), and security areas (e.g.,
signals are fully blocked because of security
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Fig. 2. An example of taboo area.

requirements, or jamming). It is worth noting that
these taboo areas are dynamic. An example of a
taboo area is illustrated in Fig. 2. Note that the taboo
area (depicted as a cone delineated by a black line),
for a particular backbone node changes dynamically
with the movement of the end user (here, we
assume total blockage if there is no direct line of
sight between end user and backbone node; in fact,
the signal attenuation due to blockage can be
incorporated into the link energy function in (8)).

Let © represent the set of physical constraints, which
includes power limitation C,, traffic capacity of backbone
nodes C., minimum physical distance Cy, and taboo areas
C,, ie, © = {C,,C.,Cy, C;}, then the optimization problem
described in (9) is transformed into

Inin{U(bU, hik‘7 Bl, Bg, ey B]\)}

st. ©={C, Co.Cy i) (10)

3.2 Convex Model

Without taking into account the physical constraints ©,
Llorca et al. [3], [11], [12] introduced an iterative approach
to solve the optimization problem described in (9). They
reported that when assuming no physical constraints this is
a convex problem, which can be solved by using gradient
descent-based methods. In [3], [11], and [12], a force-based
algorithm is used to dynamically relocate the backbone
nodes in order to jointly optimize coverage and connectiv-
ity. At each step, the net force acting on backbone node i is
computed as the negative energy gradient with respect to
its location B;, as follows:

N

Fi=-VU=a)» §b;=1)(-Vu)
a (11)
M )
+ ) 8(hie = 1)(= V'),

k=1

where §(-) is the indicator function (its value is 1 if the
statement within its argument is true, and 0 otherwise) and
—V'u,. is the link energy gradient, which determines the
force acting on backbone node i due to its interaction with
neighbor node j, as follows:
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Thus, the location B; of backbone node 7 at current iteration
t is updated according to the following:

Bi(t+1)=Bi(t)+p- F, (13)

where p is the step size to allow the location change at
every iteration. Then, the location of backbone nodes
(B1,Bs,...,By) is updated until the location change
|Bi(t) — B;(t — 1)|| reaches the predefined resolution or
the maximum number of iterations is reached. In this
paper, we refer to this algorithm as the Attraction Force
Driven algorithm (AFD).

3.3 Nonconvex Model

When taking into account the set of physical constraints ©,
the energy function U becomes nonderivative, which makes
the problem a nonconvex problem. In order to address the
constraints associated with power limitations at the net-
work nodes, recently Llorca et al. [2] further extended the
convex link energy function into a nonconvex function
employing the Morse potential [13], which is used in
molecular dynamics to characterize the potential energy
stored in bonds within molecules. Using the Morse
potential, the link energy function becomes

it = D (1 — exp(—al| B = Ti)))%, (14)

where D;; is the “dissociation energy” and 7; relates to
directivity and other communication parameters of the
wireless link (4,1) [2]. Thus, the force magnitude f; acting
on backbone node i from neighbor node [ is given by [2]

fi = 2Dymy(exp(—7u| B; — Ti||) — exp(—27(| B; — T1[])). (15)

This nonconvex force model is used in [2] to develop an
adaptive control strategy, where communication links are
retained or released based on their cost in the network. As
opposed to the AFD algorithm derived from the convex
model, where links are always retained (as the force
increases with distance) [11], [12], the adaptive algorithm
developed in [2] allows the release of connections when the
distance, or more precisely communications cost is too high.
We refer to this algorithm as the Morse Force Driven (MFD)
algorithm, which shows a significant improvement in the
average number of Source-to-Destinations (SD) maintained,
as compared to AFD [2].

In this research, we introduce a new continuous energy
function that considers power limitations as well as distance
threshold constraints, as an extension to the Morse energy
model [13]. The basic idea with respect to considering a
distance threshold between a backbone node and a terminal
node (or another backbone node) is that the network nodes
should repel each other when the distance between them
decreases to a certain point. Let f;; be the force that the
terminal node (or another backbone node) | exerts on
backbone node i, the direction and magnitude of force fi;
is given by

tir = q(B; — T), (16)

where ¢(-) denotes the function of repulsion, retention, and
release between the nodes. The repulsion/retention/release
function we consider here is
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Fig. 3. Repulsion/retention/release function for one dimension.

g(x) = —x(a — bexp(~||x||*/c))
+r(exp(=€lIxII*) — exp(—v]lx]*))),

where a, b, ¢, , £ and v are positive constants such that
a < b and £ < v. For the case with x € R', and a = 0.005,
b=8, ¢=0.8, r=0.002, £=0.0015, and v=0.03, the
function is shown in Fig. 3. Note that when the link distance
is smaller than 2, the repulsion force is the one acting on
the nodes, while the release force acts after the distance
increases to around 18. Note that the parameter a represents
the retention to maintain the connection, the item
b(exp(—||x||*/c)) represents the repulsion motivated by
[38] for small distances, and the item r(exp(—¢|x|*) —
exp(—v||x||*)) represents the release of a connection [2] for
long distances. We clarify that this hybrid function we
introduce here overcomes the shortcomings of the attrac-
tion/repulsion function [38] that assumes an infinite
sensing range, which is inconsistent with the real-world
interactions among individuals. We believe that this hybrid
function will provide insights for the stability analysis of
HHWNSs. These energy-based models, while leading to
efficient, scalable, and physically accurate control methods
for self-organization in HHWNSs [2], [11], [12], they are
parameter sensitive and require knowledge of the dynamics
of the channel as well as explicit formulations of the energy
functions, which can be difficult to obtain when considering
dynamic taboo areas such as atmospheric agents and
terrain. Furthermore, the presence of taboo areas makes
gradient-based methods unable to guarantee convergence
to globally optimal solutions.

Therefore, in this research, we propose to use two novel
approaches for the self-organization and optimization of
HHWNS, which do not require explicit knowledge of the
channel nor rely on gradient methods: FA, which uses local
information for system self-organization, and PSO, which
needs global information for system optimization. We will
investigate their performance in the context of HHWNSs.

4 FLOCKING ALGORITHM

Recall that the objective in HHWNSs is to optimize the total
energy cost of the system while guaranteeing end-to-end
communications with physical constraints. The problem has
been transformed to relocate the positions of backbone
nodes (see Section 3.1). We indicate that the use of energy
functions (harmonic function, Morse function, and hybrid
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function) makes it challenging to obtain the objective when
taking into account all kinds of physical constraints that we
include in this research. In this section, we develop a new
FA using heuristic forces to model straightforwardly the
effects of various constraints on the system.

4.1 Flocking Rules

In our model, each backbone node represents an agent in a
flock. A terminal node Tj(s) is assumed to be stationary
during the movement of backbone nodes because of a time
delay, which is consistent with practical situations. Here, s
represents the time series of the terminal node dynamics.
Thus, time ¢ € [0, tjax] (fmax is the stopping time point) with
respect to backbone nodes is a subinterval of [s — 1, s] with
respect to terminal nodes. A backbone node ¢ at time ¢ is
characterized by its location B;(t) associated with the real
coordinates (z!(t),4’(t),22(t)) and its force vector (or
velocity vector) wv;(t). Let b;;(t) and h;(t) be the link
assignment variables for backbone-to-backbone links and
backbone-to-terminal links at time ¢, respectively. The
forces acting on backbone node i include:

e Survival force. The “survival force” makes a back-
bone node try to maintain connection to those
terminal nodes it had covered at the last time period
s — 1. This force enables the effective reduction in the
loss of the closest terminal nodes to backbone node %
due to the existence of taboo areas such as
geographic constraints. The force is given by

o, =2 Ohisls — 1) = N(Tls = ) = Bilt))
g 2 o(hi(s — 1) =1)

where §(-) is the indicator function (its value is 1 if
the statement within its argument is true, and 0
otherwise).

e Repulsion force. The “repulsion force” is produced
by three sources: terminal nodes covered by the
backbone node i at the bottom layer in HHWNS,
neighbor backbone nodes connected to backbone
node i at the upper layer, and the terrain. The whole
repulsion force is determined by

Upt =Vt T Ut T U (19)

S SULS(DE Tils) - B()

Upu,l - M ul, BT ’ ( )
k 6(H5m)6(DZta )

i _ 2 0(0wa)8(DG ") (By(t) — Bi(t))

Uﬁztl = - N pul, BB ? (21)
Z]‘ 6(1)31511)5(1)315(1 )

Ui = 0(Zua)((0,0,277°(6) = Bi(t),  (22)

where, H, denotes the statement (h;,(t) = 1), Df;‘,fBT
denotes the statement (dpr(T(s), Bi(t)) < dfi ), beta
denotes the statement (b;;(t) = 1), D""%” denotes the
statement (dpp(B;(t), Bi(t)) < diP), Zy, denotes the
statement (22(t) — 2277°(t) < di¢), dp.() = - | is a

distance function, dj’,, is the distance threshold
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between backbone nodes and terminal nodes, d5” is
the distance threshold between backbone nodes, d¢"
is the minimum distance between a backbone node
and the ground, which is measured by the height
difference in the z coordinate, i.e., 2/(t) — 227"(t).
Note that the exerted repulsion force v;f;’
collision with mountains or other obstacles on the
ground. The repulsion force also contributes to the
balance between network coverage and backbone
connectivity and reduces the risk of solutions getting
stuck in local minima, which can be observed from
the experiments presented in Section 6.3.
e Retention force. The “retention force” is produced
by two sources and it is calculated according to

avoids

Upen = Vi + Vi’ (23)
isr_ i O(Hia)8(Dia™ ) (Ti(s) — Bi(t))
Vten = M ten,BT ’ (24)
k 6(H9t(l)6(Dsta )
N n,BB
BB 2 ’fijfs(bstu)‘s(DiiZ' )(Bj(t) — Bi(t))
Uten, = N ten,BB ’ (25)
Z.j 6(bsta)6<Dsta' )
where, D" denotes the statement (dﬁfp“, <

dpr(Ti(s), Bi(t)) < dB%,,), Diw™ denotes the state-
ment (df}’ < dpp(B;(t), Bi(t))), dij., is another dis-
tance threshold between backbone nodes and
terminal nodes (we explain it in the following section),
and k;; is a coefficient that considers the effect of
sharing the load between backbone nodes, which is

defined by

Ry — Y M §(Hy, M 8(Hyq
w_exp<J L o) + T 6Han)) (o
J

where R; is the capacity of the backbone node j.

o Release force. The “release force” is used to consider
the effect of power limitation, which is controlled by
a distance threshold df}’,, .. Here, we only consider
the release force between backbone nodes and
terminal nodes because a large power between
backbone nodes is usually available in practice to
assure the connectivity at the upper layer. The
release force is given by

v - >kt kb (Hota) (Dl ™) (Ti(s) — Bi(t))
lea 6(H5m)6(Dlea,BT)

sta

where, D““PT denotes the statement (dffle, <
dpr(Ti(s), Bi(t))), and ~; is a release coefficient
determined by

Yir = exp(—e(dpr(Ti(s), Bi(t)) — dp’.))s

in which ¢ is a positive constant with small value, in
this paper we set ¢ = 0.001.

(28)

In order to achieve comprehensive flocking behavior, we
sum up all the forces described above to obtain a net
velocity for the backbone node i as follows:
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Ui (t) :Uien (t) +wpv;ul (t) tw U?ea (t) tw, ’Uign (t) ’ (29)

where w,, w;, and w, are positive weighting parameters to
balance the effects of the different forces. Then, the location
of backbone node i is updated according to the following:

Bi(t+1) = Bi(t) + p- vi(t). (30)

Based on this flocking model, we are capable of straight-
forwardly addressing constraints such as power limitation
with the use of the release force vj,,, capacity with the use of
the sharing function &;;, distance threshold with the use of
the repulsion force U;ul, and taboo areas with the use of the
survival force.

4.2 Algorithm and Implementation

Our FA algorithm is developed using the above flocking
rules and based on discrete time events. Suppose all the
terminal nodes update their positions synchronously at
every time interval [s, s + 1] (e.g., every minute), and all the
backbone nodes move synchronously to update their
positions and velocities at every time step t until the
movement of each backbone node is smaller than a
predefined resolution p, i.e., ||B;(t) — Bi(t — 1)|| < p, or the
maximum number of iterations .., is satisfied. Given a
new input of coordinates of all the terminal nodes {T}(s)}
(k=1,2,...,M), and the initial locations (i.e., the old
locations at last time interval) of the backbone nodes
{Bi(0)} (:,7=1,2,...,N), we first calculate the coverage
topology hi(0) (¢t =1,2,...,N; k=1,2,..., M) while satis-
fying physical constraints. In the current implementation,
the constraints with respect to taboo areas only include
mountains in a 3D space with full terrain information. A
large number of mountains with different heights are
randomly generated. In the simulation environment, we
partition the x-y plane with a fixed grid size, which is fine
enough to produce satisfactory resolution, corresponding to
a terrain matrix Ayserrain = [Apg),xms Where each component
represents the altitude of a point in the x-y plane. Given a
terminal node with location T}, = (%, 4%, 2t ) and a backbone
node locating at B; = (z%,1?,2!), we have developed an
effective approximation algorithm to evaluate if there is
direct line of sight between the terminal node 7}, and the
backbone node B; bearing in mind the location of
mountains. In this research, we only consider blockage
between terminal nodes and backbone nodes, as the
backbone nodes are usually located at fixed high altitudes.
It is easy to extend our approach to include blockage
between backbone nodes in military applications. The
terrain checking algorithm is aided by the interpolation
function “interpl” from the MATLAB toolbox (we used
MATLAB as our simulation environment).

Forming the coverage topology, we first check the
constraints from the terrain. The basic idea is that each
terminal node will first connect to its closest backbone node.
If there is no line of sight between them, we put the backbone
node into a taboo archive and connect to the second closest
backbone node. The process stops when a connection is
achieved that satisfies the geographic constraints. If there is
no line of sight for all the backbone nodes, the terminal node
is considered isolated. We then consider the capacity
constraint R; (i = (1,2,...,N)), i.e., the maximum number
of terminals that can be connected to each backbone node. In
other words, if the number of terminals n; connecting to
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backbone node i exceeds the capacity R;, we reconnect
(n; — R;) terminals to other backbone nodes. The selection of
terminal nodes that need to be reconnected is based on the
minimum-energy-cost-first principle. The capacity checking
process is similar to the geography checking algorithm, but
the reconnection to other backbone nodes is required to first
satisfy the geographic algorithm, i.e., the geography check-
ing algorithm is embedded in this process. Finally, the
overall implementation for the flocking algorithm is sum-
marized as follows:

1. Given the initial positions of terminal nodes {7},(0)},
the physical constraints © = {C,, C., Cy, C;}, set time
s = 0 for the dynamics of terminal nodes.

2. Given the initial positions of backbone nodes
{B;(0)}, set time ¢t = 0 for the dynamics of backbone
nodes.

3. Set time t <t + 1, use the topology configuration
algorithm [39] to determine {b;;}, then check the
geographic constraints and the capacity constraints
for all the terminal nodes to determine the coverage
topology {hix}.

4. Calculate the force or velocity v;(t) for the backbone
node i according to (29).

5. Update the positions of backbone nodes {B;(t)}
according to (30).

6. Evaluate || B;(t) — B;(t — 1)|| for each backbone node,
if ||B;(t) — Bi(t — 1)|| < p, then fix the current posi-
tion of backbone node :. If the maximum number of
iterations ¢, is satisfied, go to Step 7; otherwise, go
to Step 3

7. Set time s+ s+ 1, terminal nodes move to new
positions {Tj(s)}, i.e., the new dynamics from
terminal nodes. Set B;(0) < B;(t) for each backbone
node, and go to Step 2 until simulation is over.

Note that the FA can be executed in a distributed manner

because each backbone node only uses local information from
neighbor backbone nodes and the terminal nodes in its
coverage range. It is difficult to provide an explicit form with
respect to the computational time complexity of the whole
system because of the heterogeneous dynamics of the end
users. In each time step ¢, the computational time complexity
approximates to O(N M), where we do not take into account
the computation time required for the geography and
capacity checking algorithms. In practice, geographic infor-
mation can be directly obtained by the system almost in real
time. The computational time with respect to the capacity
checking algorithm is closely related to the dynamics of the
end users and backbone nodes.

5 PARTICLE SWARM OPTIMIZER

As described in Section 3, the topology control problem in
HHWNs can be effectively formulated as an energy
minimization problem whose solution jointly optimizes
coverage and connectivity in dynamic environments. We
have developed a new FA described in the last section using
local information to control the system such that the
HHWN is autonomously self-organized. In this section,
we use PSO, a stochastic global optimization algorithm, to
investigate the performance of using global information
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from the entire system for the optimization of HHWNSs. The
use of global information is expected to produce better
solutions at the expense of longer convergence time and
scalability limitations. The performance of PSO will also be
useful to evaluate and compare the performance of
distributed algorithms such as AFD [11], MFD [2], and
FA. In this section, we develop the encoding scheme,
evaluation function, and implementation issues for PSO
within the optimization framework for HHWNS.

5.1 Encoding and Evaluation Function

In PSO, each particle represents a solution to the problem.
In HHWNSs, the solution is the location of the backbone
nodes (Bj, By, ..., By) that minimizes the total energy of
the system while satisfying real-word physical constraints.
We use a stack vector to encode particle [ as X; =
(11,212, - - ., 214) in the following way:

X1 = (T3, 212, - - T1d)

= (2b, b, 2,2l b, 2, bl ,:L'l]’v,yffv,zljv) , (31)
———— —— ——— ———
B, By B; By
where d=3N is the dimension size that each particle
explores in this optimization problem.

One important aspect of this optimization process is to
design effectively an evaluation function that characterizes
the network’s energy cost while taking into account the
physical constraints. We define a comprehensive evalua-
tion function

f=X

3

N M
hiru(B;, Ty)
=

k=1

ULos

where £ =" SV hy /N is the average number of
terminal nodes connected to a backbone node. The first
term Upr is the total energy cost for network coverage as
described in (5) and the second term Upp is the total energy
cost for backbone connectivity. The third term Ugrp is the
standard deviation of the number of terminal nodes
connected to a backbone node which characterizes the
distribution of backbone-to-terminal connections per back-
bone node. This term is used to make backbone nodes share
the end-users’ loads. Finally, the term U;og is the number of
lost connections or number of terminals not connected to
any backbone node. a (o > 0) and £(8 > 0) are weighting
parameters, whereas parameter ) is a large number used to
increase the weight on the Loss of Connections (LC) cost (in
this research, we set it at A = 10°%). Note that this function
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includes the effects of backbone connectivity, backbone
coverage, connection distribution, and loss of connections
on the system, which drives the system’s self-organization
and optimization in a comprehensive manner.

5.2 Implementation

Based on the above encoding scheme and evaluation
function, we develop a PSO algorithm for the optimization
of HHWN:s. In the initialization process, the particles are
clamped into the following space:

Q = [ml{ (O) + Tmax yli (0) + Tmax Zl{ (0) £ Tmax
... ,J:ZJ’V(O) =+ oo, y}]’V(O) =+ Thax, zZJ’V(O) + rmax],

where 7.« represents the distance that a backbone node can
move from the initial position at time ¢ =0 for the time
interval [s — 1, s]. In the evolution process, each particle is
constrained to a finite space where all the terminal nodes
move. In the simulation environment, the space is usually
a cube, ie., {2%,9, 22} € [Vmin, Umax)- Thus, each element in
X, = (@i1,212, . - ., T1,4) is in the range of [Vnin, Umax). Similar to
the use of FA, we use PSO in every time interval [s — 1, s] and
optimize the location of backbone nodes (B;, Bs,...,By)
until the maximum number of iterations ¢,y is met. During
the evaluation of the optimality of each particle, we first use
the approximation algorithm [39] to perform the backbone
topology reconfiguration, and then check the geographic
constraints and the capacity constraints for all the terminal
nodes to determine the coverage topology for the current
location of backbone nodes. The overall optimization
procedure using PSO is summarized as follows:

(33)

1. Given the initial positions of terminal nodes {7},(0)},
the physical constraints © = {C,, C., Cy, C}, set time
s = 0 for the dynamics of terminal nodes.

2. Given the initial positions of backbone nodes { B;(0)},
set time ¢ = 0 for the dynamics of backbone nodes.

3. Initialize the positions of particles X(t) = {X;(¢)}
according to (33), set the initial velocities of particles
V() = X(1) = {(Vi(t)}-

4. Use the topology reconfiguration algorithm [39] to
determine b;;, then check the geographic constraints
and the capacity constraints for all the terminal nodes
to determine the coverage topology h;;.. Evaluate the
fitness of particle X;(¢t) ({=1,2,...,N,; N, is the
number of particles in the swarm).

5. Initialize the local best P(t) = {F;(t)} for each particle
and the global best G(¢) for the whole swarm.

6. Set time ¢t «— t+ 1 and calculate inertia weight w(t)
according to (3).

7. Update the velocity V(t) ={Vi(t)} and position
X(t) = {X;(t)} according to (2) and (4), respectively.

8. Use the topology reconfiguration algorithm [39] to
determine b;;, then check the geographic constraints
and the capacity constraints for all the terminal
nodes to determine coverage topology h;;. Evaluate
the fitness of particle X;(¢) (1=1,2,...,N,).

9. Update the local best P(t) = {F;(t)} for each particle
and the global best G(t) for the whole swarm.

10. If the maximum number of iterations t,,, is satisfied,
go to Step 11; otherwise, go to Step 6.
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Fig. 4. An example of a dynamic scenario.

11. Set time s« s+ 1, terminal nodes move to new
positions {Tj(s)}, i.e., the new dynamics from
terminal nodes. Set B;(0) «— B;(t) for each backbone
node, and go to Step 2 until simulation is over.

Note that PSO uses global information from all the

backbone nodes to evaluate the optimum placement of each
particle and then selects the global best as the best possible
solution to the system when the maximum number of
iterations is met. The computational time complexity of PSO
at every time step t approximates O(N, x (3N + NM)),
which relies on the number of particles in the swarm and
the number of backbone nodes, without taking into account
the computational time from the geography and capacity
checking algorithms.

6 EXPERIMENTS

6.1 Experimental Setup

In order to verify the performance of our proposed self-
organization and optimization algorithms for HHWNSs, we
conducted extensive experimental studies and present the
corresponding results for different dynamic scenarios and
design parameters. In all simulations, M terminal nodes are
distributed over a 50 km x 50 km plane and organized in
clusters using the Minimum Spanning Tree algorithm [40].
N,, mountains are randomly generated in this plane with a
maximum height of 1.6 km (we set N,, =80 in this
research). The altitudes of terminal nodes are updated
according to the terrain. The backbone network in the upper
layer is constructed using /N backbone nodes forming a ring
topology. We use ring topologies for the backbone network
to assure resilience through bi-connectivity. An example
running in this simulation platform is shown in Fig. 4,
where M = 500, N = 20, small red dots represent terminal
nodes and large blue dots represent backbone nodes.
Terminal nodes move according to the RPGM model [41].
We place the backbone nodes at an altitude of 2 km, which
indicates the backbone nodes move in 2D space (i.e., x-y
plane), and compare FA and PSO to the Attraction Force
Driven model [11] and the Morse Force Driven model [2].
FA, PSO, AFD, and MFD are used to make backbone nodes
adjust their locations until convergence to the best possible
backbone configuration.

In our experiments, FSO links with 2 mrad half beam
divergence [42] are used for the backbone-to-backbone links
and RF links with 7/4 rad half beam divergence for the
backbone-to-terminal links. The minimum required re-
ceived power used was —45 dBm (31.6 nW) for all network
nodes. The scattering coefficient v is set to zero. We set the
power limitation for both backbone nodes and terminal
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TABLE 2
Comparative Results of Energy Cost for Scenario |

TABLE 1
Configuration of Parameter Settings for Different Scenarios
Scenarios Ntn an Cbn tmaz,FA tnLaz,PSO
Scenario | 100 10 40 2000 100
Scenario II | 500 20 80 10000 500

nodes at Pry.x =5 W. The configuration of parameter
settings for FA is: the distance threshold for the backbone-
to-terminal links dfj’ , =2 km, the distance threshold for
the backbone-to-backbone links d/;” = 10 km, the threshold
to control the release force dff,,, = 10 km, all the weighting
parameters used in (29) w, = 1, w; = 1, and w, = 1, the step
size used in (30) p=0.01, the resolution p =0.1. The
configuration of parameter settings for PSO is: the popula-
tion size N, = 20; the acceleration coefficients ¢; = ¢ = 1.49
[36], the inertia weight w € [0.4,0.9] declining linearly in
each iteration as described in (3) [36], the initial range
max = 0.5 km, the coefficients in the evaluation function
described as (32) a =1 and § = 100. Usually the larger the
number of iterations t,,.., for both FA and PSO, the better
the solutions. In order to create a fair testing platform, we
set t/4 = N, x t£90, where t£4 and 199 as the maximum
number of iterations for FA and PSO, respectively. The
rationale behind this setting is the equality of the number of
energy cost evaluations during each time interval [s — 1, s].
We evaluate two different scenarios with different numbers
of backbone nodes and terminal nodes and different
maximum numbers of iterations. The detailed scenario
settings in the first case (i.e., with fixed altitudes of
backbone nodes) are listed in Table 1." The basic parameter
settings for the AFD model [11] and MFD model [2] follow
the FA setting. All the scenarios were run continuously for
10 minutes in simulated clear atmosphere conditions.

6.2 Performance Metrics

We use three metrics: energy cost, loss of connections,
source-to-destination connections, and standard deviation
of communication load in backbone nodes, to evaluate the
performance of the different algorithms including FA, AFD
[11], and MFD [2]. The metrics are specified as follows:

e Energy cost U. The total communication energy
stored in the wireless links as defined in (5) (here,
a=1),ie,

Jj=1
N M

+ Z Z higu(By, Ty).

i=1 k=1

N
i=1

5

e Loss of connections U;ps. The number of isolated
end users (terminal nodes) that are not able to
connect to any backbone node due to physical
constraints. Its definition is as described in (32), i.e.,

1. In Table 1, Ny, denotes the number of terminal nodes; IV, denotes the
number of backbone nodes; Cy, denotes the capacity of each backbone
node; tyax 4 denotes the maximum number of iterations for FA; tyax pso
denotes the maximum number of iterations for PSO.

Time 0 1 2 3 14 5 6 |7 8 |9 10

FA |Initial 3100.7{650.2 [813.6 [617.1]621.2|537.7|534.5|511.4|510.8|634.8|674.5
Optimized|654.5 |798.5 |565.6 |564.3|511.8|507.1|466.2|442.5/555.3|598.4|631.2
PSO |Initial 3100.7{727.5 [694.4 [540.4|513.5|523.1|468.6634.1|488.7|638.6|660.0

Optimized|653.8 |757.4 |497.8 |493.2|1465.3|446.6|404.6|492.2|1454.2|562.0/606.3
MFD (Initial 3100.7{1623.1{1061.8|767.8{700.1|633.7|568.5|585.3|641.8|757.5/936.0
Optimized|1749.6|1545.1{799.7 |747.7|671.8|584.4|537.3|541.4/606.9|815.2(837.1
AFD |Initial 3100.7(680.4 |816.5 |724.1(632.7(583.8|517.1|496.9(548.5/634.9/956.5
Optimized|663.3 |815.7 {692.2 |644.3|573.7|501.2|458.7|1492.6|560.5|916.6|727.5

(35)

N M
Uros = <M - Zth)

i=1 k=1

e Source-to-destination connections Ugp. Note that
wireless links will not always be available with
respect to power constraints. Exceeding link dis-
tances and atmospheric obscuration will cause link
breaks that will terminate SD connections in the
network [2]. Here, Ugp refers to the number of SD
pairs for which a path exists between them, which is
defined as

Ny
Usp = any(nba - 1)7 (36)
i=1
where N; represents the number of clusters or
connected components at the backbone network
and n, represents the number of terminal nodes
connected to a backbone node in cluster s;.

6.3 Results and Comparison

In this section, we compare our proposed algorithms, i.e.,
FA and PSO, to AFD [11] and MFD [2] based on the above
defined metrics. Table 2 lists the energy costs of the system
at the starting point and at the end of each time interval
covering 10 minutes. For each interval, we list the results
based on the initial configuration of the HHWN and the
results after the optimization by the algorithms. On the
other hand, we summarize the results associated with LC in
Table 3. We clarify that a large value of LC brings low
energy cost, but results in bad quality of service. We
observe that the number of isolated users becomes zero
after 3 minutes for all considered algorithms. It indicates
that all four algorithms can reduce effectively the lost
connections for simple physical communication environ-
ment. Based on the similar results for LC, Table 2 shows

TABLE 3
Ratio of Lost Connections to Total Connections for Scenario |
Tme [0 (I [2 [3 [4 |5 J6 [7 [8 [9 [0
FA  |Initial 4/100{1/100{1/100{0/100{0/100|0/100]0/100{0/100{0/100{0/100{0/100

Optimized|1/100{1/100(1/100{0/100|0/100{0/100{0/100(0/100{0/100|0/100{0/100
PSO |Initial 4/100(1/100{1/100|0/100{0/100{0/100{0/100{0/100|0/100{0/100{0/100
Optimized|1/100{0/100(1/100{0/100|0/100{0/100{0/100(0/100{0/100|0/100{0/100
MFD|Initial 4/100(2/100{1/100|0/100{0/100{0/100|0/100{0/100|0/100{0/100{0/100
Optimized|3/100{1/100(1/100{0/100|0/100{0/100{0/100{0/100{0/100|0/100{0/100
AFD |Initial 4/100(1/100{1/100|0/100{0/100{0/100{0/100{0/100|0/100{0/100{0/100
Optimized|1/100{1/100(1/100{0/100|0/100{0/100{0/100{0/100{0/100|0/100{0/100
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TABLE 4
Performance of Average Energy Cost for Scenario |

Algorithm | Initial Optimized | Energy Save
FA 836.95 57231 31.62%
PSO 817.24 530.31 35.11%
MFD 1034.20 | 857.84 17.05%
AFD 881.10 640.57 27.30%
3500 . . T . .
—FA
3000 | - ;ig 1
—-—-AFD
26 | g
:;2000 1{ 1
2w e 1
] 48
o 1 Il 1 3 1 i 1 Il

1
89 910 10

Il
0 01 12 23 34 45 56 67 78
Time Interval

Fig. 5. Evolution of energy cost against time interval for scenario I.

TABLE 5
Comparative Results of Source-to-Destination
Connections for Scenario |

Time 0 1 2 |13 |4 |5 |6 |7 |8 |9 10
FA |Initial 1122|3080 (2352 {3306 | 3422|4556 |4032|4290|4032|3906 | 3782
Optimized [ 3442|3660 [4160 |4160 4556|4422 (4556|5122 (4692|4422 |4556
Initial 1122{3660 3906 {4290 4032|3540 4830 5550|6006 | 5402 | 4692
Optimized |3782(4160{5256 |5112|4970|5550|5700 | 5256|6162 |5550|4970
MEFD |Initial 112215603660 |4160|4160|4830|5112|5852|5550(4556|4970
Optimized | 2652 4032|4160 4422|4692 |5256|5402|5550 (5256 4970|5112
AFD |Initial 112234223422 |3422|3306|3782|3906 4290 |4160|3906| 3906
Optimized [ 3660 [ 3660 [ 3540|3540 4160 (4556 (46924970 {4422 4290|3906

PSO

that FA delivers better results compared to AFD and MFD
in overall simulation time. PSO achieves a significant
improvement in energy cost while producing satisfactory
results for LC. It is also noted that the energy cost produced
by MFD decreases rather slowly during the first 4 minutes.
That is because in MFD, long distance links are character-
ized by small forces (related to the release of connections),
which makes the convergence to the initial optimal
configuration slower than with the other algorithms. That
is why after the same number of iterations, even AFD is able
to obtain a better initial solution than that obtained by MFD.
Table 4 shows the average energy cost for different
algorithms according to Table 2. FA and PSO save 31.62
and 35.11 percent energy, respectively, which outperforms
AFD and MFD. Fig. 5 visually illustrates the evolution of
the energy cost corresponding to Table 2. It is observed that
the convergence speed of FA, AFD, and MFD is faster than
PSO but at the expense of getting stuck in local minima.
Another observation is that the value of the energy cost
produced by FA during minutes 4, 7, 9, and 10 oscillates,
which is caused by the predefined resolution y. In terms of
the SD metric, we compare the results in Table 5 for every
time interval and also summarize the average SD connec-
tions in Table 6. At minute 8, PSO achieves 6162 SD
connections, which is much better than other methods.
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TABLE 6
Performance of Average Source-to-Destination
Connections for Scenario |

Algorithm | Initial Optimized | Energy Save

FA 3443.6 | 4340.7 26.05%

PSO 42755 | 51335 20.07%

MFD 4139.3 | 46822 13.12%

AFD 3513.1 | 4126.9 17.47%

TABLE 7
Comparative Results of Energy Cost for Scenario Il
Time 0 1 2 3 4 5 6 7 8 9 10
FA |Initial 19910.0{2834.1|2662.9|2628.4|2879.5(3058.1|2778.4|2723.2|2751.3|2710.0{2700.6

Optimized |2597.9 |2881.1|2446.0(2465.4|2725.9(2720.7|2534.7|2666.02637.8|2507.3|2714.7
PSO |Initial 19910.0|3468.4(2691.0|2587.0|2660.5|3044.2|2718.0|2635.6|2682.9 [2571.1|2735.1
Optimized |2916.0 |2549.3|2391.6(2397.7|2486.3|2563.2|2476.3|2446.2|2406.9|2414.5|2489.4

MED |Initial 19910.0(2932.7|2958.3|2648.4|2898.4|3099.4 | 2824.5|3047.7|2764.6 | 2843.1|2884.0
Optimized |3169.5 |2717.0{2978.6|2527.1|2666.9|2853.8|2887.4|2758.6|2797.5|2683.2|2895.0
AFD |Initial 19910.0(2911.4{3014.6|2656.4 |2668.4|3169.7|2833.0{2816.6|2721.1|2635.5|3056.7

Optimized |3006.4 |2618.7|2569.6(2523.2|2685.2(2891.6|2690.7 |2676.1|2528.5|2638.4|2843.3

TABLE 8
Ratio of Lost Connections to Total Connections for Scenario Il

Time 0 1 2 3 4 5 6 7 8 9 10
FA  |Initial 44/500{1/500{0/500{2/500{5/500{0/500| 1/500|2/500{1/500{1/500{2/500
Optimized|2/500 [1/500(1/500{3/500{3/500{1/500{1/500(2/500|1/500|1/500(2/500
PSO |Initial 44/500{1/500{0/500{2/500{5/500{0/500| 1/500| 1/500{1/500{1/500{2/500
Optimized|3/500 |0/500(0/500{2/500{2/500{0/500{0/500(1/500|1/500|1/500(2/500
MED |Initial 44/500{1/500{1/500{3/500{5/500{2/500| 1/500|2/500{1/500{1/500{3/500
Optimized|1/500 [1/500{2/500{3/500{5/500{1/500{1/500{2/500|1/500|2/5002/500
AFD |Initial 44/500{2/500{1/500{3/500{6/500{1/500| 1/500| 1/500{1/500{1/500{2/500
Optimized|2/500 (3/500(2/500{3/500{4/500{0/500{1/500{1/500|1/500|1/5002/500

Energy Cost

D.EL R mE GE_ B W CHE B W ]
DEl

Time Interval

Fig. 6. Evolution of energy cost against time interval for scenario II.

From minute 3 to 7, MFD produces a larger number of SD
connections than FA and AFD. But FA delivers a more
significant improvement based on the average SD connec-
tions as shown in Table 6. It is noted that although MFD
achieves a large number of average SD connections, the
improvement it delivers is relatively small due to the large
initial number of SD connections.

For scenario II, with 500 terminal nodes and 20 backbone
nodes, the energy cost in each time interval and the total
average cost are summarized in Tables 7 and 9. Table 8
shows the results associated with the LC metric. We
observe that PSO consistently outperforms other methods,
but its convergence speed is slower, as shown in Fig. 6. FA
and PSO perform slightly better than MFD and AFD in
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TABLE 9
Performance of Average Energy Cost for Scenario

Algorithm | Initial Optimized | Energy Save

FA 4330.6 | 2627.0 39.34%

PSO 4336.7 | 2503.4 42.27%

MFD 44374 | 28122 36.63%

AFD 4399.4 | 26974 38.69%
TABLE 10

Comparative Results of Source-to-Destination
Connections for Scenario Il

Time 0 1 2 3 4 5 6 7 8 9 10
FA | Initial 4290 {93942 {90300 |96410 |83810 (72092 (81510 |84390 |89700 |100172|102080
Optimized | 100172 | 114582 | 115260|105950{88506 |83232 (96410 (99540 |104652|115260|115940
PSO |Initial 4290 {79242 90902 |86142 |89700 (88506 (86142 (90902 (89102 {91506 |95790
Optimized | 88506 |102720|115940|106602| 102080 | 106602 | 100806 | 102720|110556|109892| 107256
MEFD | Initial 4290 1108570105300 (92720 |85556 |80372 (83810 (80940 [97656 |102080 100806
Optimized | 109892 | 122850 | 115940|107256{89102 |95172 (87912 97032 |105300|114582|117306
AFD |Initial 4290 91506 |100172|86142 |83232 |79242 |79242 |79806 |92720 |97656 |98910
Optimized | 100172 | 113232|105300|98282 {90902 |91506 (88506 [98282 |109892|105300|111890

TABLE 11
Performance of Average Source-to-Destination
Connections for Scenario Il

Algorithm | Initial | Optimized | Energy Save
FA 81700 | 103590 26.79%
PSO 81111 | 104880 29.30%
MFD 85645 | 105670 23.38%
AFD 81174 | 101210 19.80%
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i Scenaio I
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Fig. 7. Percentage of average energy saving for different scenarios.

terms of average energy saved as observed from Table 9. As
shown in Table 10, MFD produces larger number of SD
connections in the first three intervals compared to other
methods. For overall time intervals, compared to the initial
configuration of HHWN, 26.79 and 29.30 percent improve-
ments of SD connections are achieved by FA and PSO as
shown in Table 11.

n summary, we have listed the performance of the
proposed FA and PSO algorithms in terms of energy
savings and improvement in SD connections for different
scales of HHWNSs as shown in Figs. 7 and 8. We have also
compared the results with the performance of existing AFD
[11] and MFD [2] algorithms. It is observed that with an
increase of the scale of the network the percentage of energy
savings produced by FA, MFD, and AFD, increases,
whereas the improvement in SD connections produced by
PSO increases. From these comparative results, PSO per-
forms best over all the scenarios, but its convergence speed
is relatively slower, which is indicated by Figs. 5 and 6. FA
delivers significantly good performance in terms of all the
metrics and also exhibits a fast convergence speed. It is also
observed that the solutions produced by FA, MFD, and
AFD easily get stuck in local minima, which is caused by

1219

35, 00%

30, 00%

25,00%

20, 00%

15.00%

10.00% 4

Inprovenent of SD Connections

5.00%

0.00% T"FA PSO MFD AFD
Scenario I

FA P50 MFD AFD
Scenario IT

Fig. 8. Improvement of average SD connections for different scenarios.
950 T

— 7 Initial
900 F | —H— Optimized B

60 B

b
600 [ g

7801 B

o0 B

Ayverage energy cost

B0t 4

600 / =l
2=
e "
550 L
1 2 3
Distance threshold to control backbone-toterminal repulsion force

Fig. 9. Average energy cost versus distance threshold dﬁﬂml.

950 T
—%— Initial
900 - —H5— Optimized [
B0 @000 e
w B00F 1
a
a
=
= 780 - q
@
=
o
& 700 - a
&
o
4 B50 q
500 - =
S
550+ 1

500 i
5 10 15
Distance threshold 1o control backbone-to-backbone repulsion force

Fig. 10. Average energy cost versus distance threshold d52.

the existence of physical constraints (e.g., taboo areas) and
the fact that they only use local information.

6.4 Parametric Study

In this section, we conduct an empirical study on the
parameters involved in the FA model and their effects on
the performance metrics. It includes the study of the
distance threshold dfj’; to control the backbone-to-terminal
repulsion force, the distance threshold d5” to control the
backbone-to-backbone repulsion force, the distance thresh-
old dfil,,, to control the backbone-to-terminal release force,
and the resolution u (see Section 4).

We use the average energy cost to measure the effects
of these parameters. Scenario I, i.e., 100 terminal nodes
and 10 backbone nodes, is used as the simulation
platform. Fig. 9 shows the results of average energy cost
against the distance threshold djj’,, with respect to the
initial configuration and the optimized HHWN structure.
It indicates that the initial and optimized energy costs both
increase with an increase of the distance threshold dgf;ml,
varying from 1 km to 3 km. However, as shown in Fig. 10,
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increasing the distance threshold d5? from 5 km to 15 km,
which is used to control the backbone-to-backbone
repulsion force, does not significantly affect the average
energy cost. This phenomenon is caused by equally
balancing the forces for backbone-to-backbone links and
backbone-to-terminal links. It is easy to use a weighting
coefficient to flexibly balance these two types of links. The
effect of weighting coverage and connectivity costs on the
total energy cost has been thoroughly analyzed in [11].
Changing the distance threshold di% , to control the
backbone-to-terminal release force also produces slight
changes in the average energy cost as shown in Fig. 11,
which is caused by FA favoring coverage cost such that
every backbone node tightly follows the terminal nodes it
covers while counteracting the release force. We use a
predefined resolution p to control the exploration of FA.
The performance of setting the resolution p at 0.01, 0.05,
0.1, and 0.5 is demonstrated in Fig. 12. For the case of
1 =0.1, the performance is better in terms of producing
lower energy cost. The choice of resolution ;1 depends on
practical applications. On the other hand, we clarify that a
smaller resolution makes FA need more computational
time to converge to the best possible solution.

7 DisScusSsION

From the comparative results, we observe that PSO
consistently delivers superior performance over FA, MFD,
and AFD in terms of energy cost in an HHWN. We believe
that this can be attributed to the use of global information
and the stochastic property of PSO, which enables it to
transcend local minima. On the other hand, FA also
performs better compared to MFD and AFD, which is
attributed to the use of heuristic forces, i.e., repulsion,
retention, and release, instead of only considering the
retention force by AFD [11] and the retention-release force
by MED [2]. We summarize the comparative features of FA
and PSO in the following;:

e FA uses local information with respect to every
backbone node, whereas PSO needs global informa-
tion of an HHWN to evaluate the whole perfor-
mance of the system.

e The convergence speed of FA is much faster than
PSO, but the solutions it produces are subject to
local minima.
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e FA canbeimplemented in a distributed way, whereas
PSO supports parallel computing of the updates of
solutions with the use of global information.

e Heuristic forces are used in FA to maintain the
connectivity and coverage architecture of an
HHWN, which can be transformed into an optimi-
zation problem, whereas PSO enables us to optimize
the HHWN directly by defining a fitness function.

e PSO wusually produces better solutions for more
complex wireless communication environments,
which is attributed to its stochastic global optimiza-
tion strategy.

e With the use of FA, the backbone nodes are enabled
to flexibly move in 3D space by taking into account
the repulsion force from the physical constraints
(e.g., mountains). On the contrary, it is difficult to
use PSO in this case because the range in the z
coordinate that particles roam in depends on the
heights of mountains such that the exploration space
becomes unsmooth.

It should be noted that we are not attempting to map
real-world network scenarios into actual biological systems.
The use of flocking rules and swarming behavior is
generalizable and applicable to controlling and optimizing
an HHWN. Actually, the flocking behavior of backbone
nodes does not exactly map to that in biological systems.
Based on the observations drawn from our experiments, we
clarify that it is possible to develop a unified system using
both FA and PSO algorithms, where the FA algorithm is
used to control the HHWN in a distributed manner and
provide initial solutions, while PSO can be used for finer
system optimization, especially in complex environments,
and when global information is available.

8 CoONCLUSIONS AND FUTURE WORK

This paper presents new models and algorithms for control
and optimization of a class of next generation communica-
tion networks: hierarchical heterogeneous wireless net-
works, under real-world physical constraints. An HHWN
is characterized by directional wireless links connecting
backbone nodes at the upper layer and dynamic terminal
nodes at the bottom layer. First, we propose a mathematical
modeling method for the self-organization and optimization
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of HHWNSs by taking into account physical constraints in
terms of minimum distance threshold, power limitations,
and capacity of backbone nodes. Second, using only local
information, we develop new flocking rules and a corre-
sponding algorithm to autonomously assure, control, and
optimize network performance in a practical way. Asso-
ciated physical constraints checking algorithms are also
developed. Third, we use Particle Swarm Optimization, a
stochastic global optimization algorithm, to optimize an
HHWN directly with a hybrid evaluation function and using
global information.

Experimental results confirm that our flocking algorithm
and PSO both perform well for the optimization of an
HHWN in terms of performance metrics such as energy
cost, loss of connections, and number of SD connections.
PSO produces superior performance but results in a
relatively slow convergence speed and only favors the
dynamics of backbone nodes in the x-y plane. FA is capable
of delivering fast convergence speed while achieving
satisfactory solutions for an HHWN. Furthermore, with
the use of FA, the backbone nodes can move flexibly in 3D
space by taking into account the repulsion force from the
physical constraints (e.g., mountains). In future work, we
plan to investigate our algorithms in more complex
dynamic environments. We also note that the stability
analysis of dynamic HHWN:s is still an open problem, and
we plan to conduct a theoretical analysis of the stability of
an HHWN in the context of self-organization and control.
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